Modeling and Mapping of Aboveground Biomass and Carbon Stock Using Sentinel-2 Imagery in Chure Region, Nepal

Author:

Poudel Ananta1ORCID,Shrestha Him Lal1ORCID,Mahat Niraj2ORCID,Sharma Garima1ORCID,Aryal Sahara1,Kalakheti Rupesh3,Lamsal Basanta34

Affiliation:

1. Kathmandu Forestry College, Tribhuvan University, Kathmandu, Nepal

2. Institute of Forestry, Hetauda Campus, Tribhuvan University, Hetauda, Nepal

3. Environmental Forum for Research and Development Nepal, Kathmandu, Nepal

4. Department of International Relations and Diplomacy, Tribhuvan University, Kirtipur, Nepal

Abstract

The concerns about climate change in recent decades have heightened the need for effective methods for assessing and reporting forest biomass and Carbon Stocks (CS) at local, national, continental, and global scales. Accurate assessment of Aboveground Biomass (AGB) is critical for the sustainable management of forests, especially in the Chure region, a fragile and young mountainous in the lesser Himalaya of Nepal. This paper presents the modeling and mapping approach and shows how medium-resolution Sentinel-2 multispectral instrument (MSI) data can be used instead of hyperspectral data in inaccessible areas of the Chure region. The data were collected and analyzed from 72 circular sample plots. 60% (43 random sample plots) were used to create the model, while the remaining 40% (29 plots) were used for model validation. This study involved calculating 12 different vegetation indices and correlating them with plot-level AGB. Five models, including linear, logarithmic, quadratic, power, and exponential, were created, but the best model was found to be the quadratic model using normalized difference vegetation indices (NDVIs) with an R2 value of 0.777 and a correlation coefficient of 0.881. The model’s AIC and BIC values were 313.60 and 320.65, respectively. The validity of the model was performed using observed and predicted AGB values, resulting in an r value of 0.9128, an R2 value of 0.8332, and an RMSE value of 10.7657 t·h−1. Finally, the developed regression equation was used to map AGB in the study area. The AGB per pixel ranges from 0 to 129.18 t·h−1, whereas the amount of CS ranges from 0 to 61.01 t·h−1. Among the different vegetation indices used in the study, NDVI was found to be more precise in estimating and mapping biomass and carbon stocks in this study. Therefore, the study recommends using the quadratic model of NDVI for accurate estimation of AGB and CS in the Chure region of Sainamaina municipality.

Funder

Agro-Forestry Promotion

Publisher

Hindawi Limited

Subject

Nature and Landscape Conservation,Plant Science,Ecology, Evolution, Behavior and Systematics,Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3