Parallel Swarm Intelligent Motion Planning with Energy-Balanced for Multirobot in Obstacle Environment

Author:

Su Shoubao12ORCID,Zhao Wei12,Wang Chishe1ORCID

Affiliation:

1. Jiangsu Key Laboratory of Data Science and Smart Software, Jinling Institute of Technology, Nanjing 211169, China

2. School of Computer, Jiangsu University of Science and Technology, Zhenjiang 212003, China

Abstract

Multirobot motion planning is always one of the critical techniques in edge intelligent systems, which involve a variety of algorithms, such as map modeling, path search, and trajectory optimization and smoothing. To overcome the slow running speed and imbalance of energy consumption, a swarm intelligence solution based on parallel computing is proposed to plan motion paths for multirobot with many task nodes in a complex scene that have multiple irregularly-shaped obstacles, which objective is to find a smooth trajectory under the constraints of the shortest total distance and the energy-balanced consumption for all robots to travel between nodes. In a practical scenario, the imbalance of task allocation will inevitably lead to some robots stopping on the way. Thus, we firstly model a gridded scene as a weighted MTSP (multitraveling salesman problem) in which the weights are the energies of obstacle constraints and path length. Then, a hybridization of particle swarm and ant colony optimization (GPSO-AC) based on a platform of Compute Unified Device Architecture (CUDA) is presented to find the optimal path for the weighted MTSPs. Next, we improve the A algorithm to generate a weighted obstacle avoidance path on the gridded map, but there are still many sharp turns on it. Therefore, an improved smooth grid path algorithm is proposed by integrating the dynamic constraints in this paper to optimize the trajectory smoothly, to be more in line with the law of robot motion, which can more realistically simulate the multirobot in a real scene. Finally, experimental comparisons with other methods on the designed platform of GPUs demonstrate the applicability of the proposed algorithm in different scenarios, and our method strikes a good balance between energy consumption and optimality, with significantly faster and better performance than other considered approaches, and the effects of the adjustment coefficient q on the performance of the algorithm are also discussed in the experiments.

Funder

Jiangsu Provincial Sci-Tech Innovation Team of Swarm Computing and Smart Software

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3