Abstract
To improve the performance of the whale optimization algorithm and further enhance the search accuracy, while increasing the convergence speed, a quasi-reflective chaotic mutant whale swarm optimization, namely QNWOA, is proposed, fused with an operator of Fish Aggregating Devices (FADs) in this paper. Firstly, the swarm diversity is increased by using logistic chaotic mapping. Secondly, a quasi-reflective learning mechanism is introduced to improve the convergence speed of the algorithm. Then, the FADs vortex effect and wavelet variation of the marine predator algorithm (MPA) are introduced in the search phase to enhance the stability of the algorithm in the early and late stages and the ability to escape from the local optimum by broking the symmetry of iterative routes. Finally, a combination of linearly decreasing and nonlinear segmentation convergence factors is proposed to balance the local and global search capabilities of the algorithm. Nine benchmark functions are selected for the simulation, and after comparing with other algorithms, the results show that the convergence speed and solution accuracy of the proposed algorithm are promising in this study.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献