GSH Synthetic Analogue O-Methyl-L-Tyrosinylglutathione Regulates Nrf2-Mediated Expression of GCLc and GCLm

Author:

Hansen Mats1ORCID,Porosk Rando1ORCID,Mahlapuu Riina1ORCID,Kairane Ceslava1ORCID,Kilk Kalle1,Soomets Ursel1ORCID

Affiliation:

1. Institute of Biomedicine and Translational Medicine, Department of Biochemistry, Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia

Abstract

A glutathione (L-γ-glutamyl-L-cysteinylglycine, GSH) analogue, UPF1 (O-methyl-L-tyrosinylglutathione), has been shown to increase intracellular concentration of total glutahione (tGSH) in K562 cells. The synthesis of GSH is a two-step process that requires the actions of two distinct enzymes: γ-glutamyl-cysteine ligase (GCL) and glutathione synthetase (GS). Transcription of the GCL is controlled by multiple different factors, among others the nuclear factor (erythroid-derived 2)-like 2 transcription factor (Nrf2), which under the oxidative stress translocates into nucleus, where it binds to the dedicated binding site—antioxidant response element (ARE). In the present study, we investigated if the observed increased concentration of intracellular tGSH is a result of activation of Nrf2 protein—a key transcription factor in the cellular antioxidant response. Two distinct cell lines, adherent human hepatocarcinoma cell line HepG2 and nonadherent human myelogenous cell line K562, were chosen to establish if the increased intracellular tGSH is a universal response to the UPF1 treatment. Western blot analysis demonstrated that, after 3 h, the catalytic subunit of GCL (GCLc) level in HepG2 cells was higher than the modifying subunit of GCL (GCLm), while in K562 cells no change was observed. After 24 h, the GCLc level was higher than GCLm in K562 cells but not in the HepG2 cell line. Reverse-transcriptase PCR experiment demonstrated that no statistically significant difference was found in GCLm or GCLc mRNA levels, while the expression of the mRNA of Nrf2 and GS was elevated in the K562 cell line. Our findings suggest that UPF1 displays unique properties of mobilizing cellular defence mechanisms against reactive oxygen species while it is previously been shown to act as potent antioxidant per se.

Funder

Eesti Teadusfondi

Publisher

Hindawi Limited

Subject

General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3