Random Target Localization for an Upper Limb Prosthesis

Author:

Zhang Xinglei12ORCID,Fan Binghui3ORCID,Wang Chuanjiang3ORCID,Cheng Xiaolin4ORCID,Feng Hongguang4ORCID,Tian Zhaohui4ORCID

Affiliation:

1. College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China

2. College of Mechanical and Electric Engineering, Zaozhuang University, Zaozhuang 277160, China

3. College of Electrical and Automation Engineering, Shandong University of Science and Technology, Qingdao 266590, China

4. College of Mechanical Engineering, Shandong University, Jinan 250100, China

Abstract

To achieve the purpose of accurately grasping a random target with the upper limb prosthesis, the acquisition of target localization information is especially important. For this reason, a novel type of random target localization algorithm is proposed. Firstly, an initial localization algorithm (ILA) that uses two 3D attitude sensors and a laser range sensor to detect the target attitude and distance is presented. Secondly, an error correction algorithm where a multipopulation genetic algorithm (MPGA) optimizes backpropagation neural network (BPNN) is utilized to improve the accuracy of ILA. Thirdly, a general regression neural network (GRNN) algorithm is proposed to calculate the joint angles, which are used to control the upper limb prosthetic gripper to move to the target position. Finally, the proposed algorithm is applied to the 5-DOF upper limb prosthesis, and the simulations and experiments are proved to demonstrate the validity of the proposed localization algorithm and inverse kinematics (IK) algorithm.

Funder

Government of Shandong Province

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Reference26 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3