A Generalized Capillary Imbibition Model for Porous Media in Tight Reservoirs

Author:

Wang Zhiyuan12ORCID,Yang Zhengming23ORCID,Ding Yunhong3,Lin Wei12ORCID,He Ying23,Duan Xiaolang4

Affiliation:

1. University of Chinese Academy of Sciences, Beijing 100049, China

2. Institute of Porous Flow and Fluid Mechanics, Chinese Academy of Sciences, Langfang 065007, China

3. Research Institute of Petroleum Exploration and Development, Beijing 100083, China

4. Production Operation Office, Production Branch of Southwest Oil and Gas Gield, Petrochina, Chengdu 610051, China

Abstract

Capillary imbibition models have been widely studied in oil and gas development field over the past decades. However, the existing models applied to the tight reservoirs rarely take fluid flow resistance and apparent viscosity into account. To investigate the capillary imbibition characteristics of fluids in tight porous media, a generalized capillary imbibition model considering the flow resistance and apparent viscosity of fluids in tight porous media is derived. By comparing with the results of other capillary imbibition models and experimental data, the derived capillary imbibition model is verified. In addition, compared with the conventional capillary imbibition models, the derived capillary imbibition model is more consistent with the experimental results and has a wider applicability. The imbibition distance of water in tight reservoirs can also be obtained using the derived capillary imbibition model, which will facilitate the study on water injection development in tight oil and gas reservoirs.

Funder

National Science and Technology Major Project of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3