Numerical Simulation Research on Cutting Rock with a PDC Cutter Assisted by an Impact Force

Author:

Wang Yong1ORCID,Ni Hongjian1ORCID,Wang Ruihe1,Huang Bin1,Liu Shubin1,Zhang Heng1

Affiliation:

1. School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China

Abstract

Extensive studies have been carried out on cutting rock with a PDC cutter, but cutting rock assisted by impact force is rarely studied. In this paper, cutting rock using conical and cylindrical PDC cutters assisted by impact force were researched with the explicit dynamic model. The laws of cutting rock using a cylindrical cutter assisted by impact force are the same as those of a conical cutter. There are thresholds of impact frequency and amplitude when they are single variables. When impact frequency is lower than the threshold frequency, the impact frequency is the dominant frequency in the frequency spectrum of weight on bit (WOB), and the amplitude of dominant frequency and removal volume decreases with the increase of impact frequency. When the impact frequency is higher than the threshold frequency, there is no dominant frequency in the frequency spectrum of WOB, and the removal volume behaves the same. When the impact force is lower than the threshold amplitude, there is no dominant frequency in the frequency spectrum of WOB, and it does not affect the removal volume but the removal volume is positively correlated with the impact amplitude. When the impact amplitude is higher than the threshold amplitude, the removal volume is also positively correlated with the impact amplitude, and the removal volume assisted by low-frequency (20 Hz and 40 Hz) impact force is higher. The frequency threshold and amplitude threshold of the conical cutter are smaller than those of the cylindrical cutter. Although the cutting depth and removal volume of the conical cutter are lower than those of the cylindrical cutter, the amplifications of cutting depth and removal volume of the conical cutter are higher than those of the cylindrical cutter when assisted by impact force.

Funder

Major Science and Technology Project of the CNPC

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3