Structure Design of Bionic PDC Cutter and the Characteristics of Rock Breaking Processes

Author:

Wu Zebing1,Yuan Ruofei1ORCID,Zhang Wenxi1,Liu Jiale1,Hu Shiyao1

Affiliation:

1. College of Mechanical Engineering, Xi’an Shiyou University, Xi’an 710065, China

Abstract

The rational structural design of polycrystalline diamond compact (PDC) cutters effectively enhances the performance of drill bits in rock fragmentation and extends their service life. Inspired by bionics, a bionic PDC cutter was designed, taking the mole claw toe, shark tooth, and microscopic biomaterial structures as the bionic prototypes. To verify its rock-breaking effectiveness, the finite element method was employed to compare the rock-breaking processes of the bionic cutter, triangular prism cutter, and axe cutter. The study also investigated the influence of different back rake angles, cutting depths, arc radii, and hydrostatic pressures on rock breaking using the bionic cutter. Prior to this, the accuracy of the finite element model was validated through laboratory tests. Subsequently, a drill bit incorporating all three types of cutters was constructed, and simulations of rock breaking were conducted on a full-sized drill bit. The results demonstrate that the bionic cutter exhibits superior load concentration on the rock compared to the triangular prism cutter and the axe cutter. Additionally, its arc structure facilitates the “shoveling” of the rock, making it more susceptible to breakage under tensile stress. As a result, the efficiency of the bionic cutter surpasses that of the triangular prism and axe cutters. Similarly, it exhibits minimal fluctuations and values in cutting force. As the back rake angle and cutting depth increase, the MSE and cutting force of all three cutters also increase. However, the bionic cutter consistently maintains the lowest MSE and cutting force, confirming the superiority of its bionic structural design. The MSE and cutting force of the bionic cutter fluctuate with the increase of the arc radius, and the optimal arc radius falls within the simulation range, between 21 mm and 23 mm. Compared to the other two types of cutters, bionic cutters possess a unique structure that allows for better release of internal stress within the rock, thereby ensuring higher efficiency in rock-breaking, particularly in deep geological formations. The rock breaking simulation results of full-sized drill bits show that the use of a bionic cutter can improve the drill bit’s ability to penetrate the formation, reduce the possibility of drill bit bounce during the rock breaking process, prevent the occurrence of stick-slip, improve the drilling stability, effectively improve the efficiency and service life of the drill bit during the rock breaking process, and reduce the drilling cost. It is concluded that the research results of bionic PDC cutters are helpful to the development of high-performance drill bits and the reduction of drilling costs.

Funder

Zebing Wu

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3