Predicting Coupled Herbs for the Treatment of Hypertension Complicated with Coronary Heart Disease in Real-World Data Based on a Complex Network and Machine Learning

Author:

Huan Jia-Ming1ORCID,Li Yun-Lun2,Zhang Xin3,Wei Jian-Liang3,Peng Wei3,Wang Yi-Min2,Su Xiao-Yi2,Wang Yi-Fei3ORCID,Su Wen-Ge3ORCID

Affiliation:

1. School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China

2. First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China

3. The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China

Abstract

Hypertension and coronary heart disease are the most common cardiovascular diseases, and traditional Chinese medicine is applied as an auxiliary treatment for common cardiovascular diseases. This study is based on 3 years of electronic medical record data from the Affiliated Hospital of Shandong University of Traditional Chinese Medicine. A complex network and machine learning algorithm were used to establish a screening model of coupled herbs for the treatment of hypertension complicated with coronary heart disease. A total of 5688 electronic medical records were collected to establish the prescription network and symptom database. The hierarchical network extraction algorithm was used to obtain core herbs. Biological features of herbs were collected from public databases. At the same time, five supervised machine learning models were established based on the biological features of the coupled herbs. Finally, the K-nearest neighbor model was established as a screening model with an AUROC of 91.0%. Seventy coupled herbs for adjuvant treatment of hypertension complicated with coronary heart disease were obtained. It was found that the coupled herbs achieved the purpose of adjuvant therapy mainly by interfering with cytokines and regulating inflammatory and metabolic pathways. These results show that this model can integrate the molecular biological characteristics of herbs, preliminarily screen combinations of herbs, and provide ideas for explaining the value in clinical applications.

Funder

Jinan Science and Technology Bureau

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3