Shapely additive values can effectively visualize pertinent covariates in machine learning when predicting hypertension

Author:

Huang Alexander A.12,Huang Samuel Y.13ORCID

Affiliation:

1. Cornell University New York USA

2. Northwestern University Feinberg School of Medicine Chicago USA

3. Virginia Commonwealth University School of Medicine Richmond USA

Abstract

AbstractMachine learning methods are widely used within the medical field to enhance prediction. However, little is known about the reliability and efficacy of these models to predict long‐term medical outcomes such as blood pressure using lifestyle factors, such as diet. The authors assessed whether machine‐learning techniques could accurately predict hypertension risk using nutritional information. A cross‐sectional study using data from the National Health and Nutrition Examination Survey (NHANES) between January 2017 and March 2020. XGBoost was used as the machine‐learning model of choice in this study due to its increased performance relative to other common methods within medical studies. Model prediction metrics (e.g., AUROC, Balanced Accuracy) were used to measure overall model efficacy, covariate Gain statistics (percentage each covariate contributes to the overall prediction) and SHapely Additive exPlanations (SHAP, method to visualize each covariate) were used to provide explanations to machine‐learning output and increase the transparency of this otherwise cryptic method. Of a total of 9650 eligible patients, the mean age was 41.02 (SD = 22.16), 4792 (50%) males, 4858 (50%) female, 3407 (35%) White patients, 2567 (27%) Black patients, 2108 (22%) Hispanic patients, and 981 (10%) Asian patients. From evaluation of model gain statistics, age was found to be the single strongest predictor of hypertension, with a gain of 53.1%. Additionally, demographic factors such as poverty and Black race were also strong predictors of hypertension, with gain of 4.33% and 4.18%, respectively. Nutritional Covariates contributed 37% to the overall prediction: Sodium, Caffeine, Potassium, and Alcohol intake being significantly represented within the model. Machine Learning can be used to predict hypertension.

Publisher

Wiley

Subject

Cardiology and Cardiovascular Medicine,Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3