Use machine learning models to identify and assess risk factors for coronary artery disease

Author:

Zhang MingyangORCID,Wang Hongnian,Zhao JuORCID

Abstract

Accurate prediction of coronary artery disease (CAD) is crucial for enabling early clinical diagnosis and tailoring personalized treatment options. This study attempts to construct a machine learning (ML) model for predicting CAD risk and further elucidate the complex nonlinear interactions between the disease and its risk factors. Employing the Z-Alizadeh Sani dataset, which includes records of 303 patients, univariate analysis and the Boruta algorithm were applied for feature selection, and nine different ML techniques were subsequently deployed to produce predictive models. To elucidate the intricate pathogenesis of CAD, this study harnessed the analytical capabilities of Shapley values, alongside the use of generalized additive models for curve fitting, to probe into the nonlinear interactions between the disease and its associated risk factors. Furthermore, we implemented a piecewise linear regression model to precisely pinpoint inflection points within these complex nonlinear dynamics. The findings of this investigation reveal that logistic regression (LR) stands out as the preeminent predictive model, demonstrating remarkable efficacy, it achieved an Area Under the Receiver Operating Characteristic curve (AUROC) of 0.981 (95% CI: 0.952–1), and an Area Under the Precision-Recall Curve (AUPRC) of 0.993. The utilization of the 14 most pivotal features in constructing a dynamic nomogram. Analysis of the Shapley smoothing curves uncovered distinctive “S”-shaped and “C”-shaped relationships linking age and triglycerides to CAD, respectively. In summary, machine learning models could provide valuable insights for the early diagnosis of CAD. The SHAP method may provide a personalized risk assessment of the relationship between CAD and its risk factors.

Publisher

Public Library of Science (PLoS)

Reference48 articles.

1. Machine learning-based coronary artery disease diagnosis: A comprehensive review;R Alizadehsani;Computers in biology and medicine,2019

2. The top 10 causes of death 2020 [9 December 2020]. Available from: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death.

3. Machine learning-based marker for coronary artery disease: derivation and validation in two longitudinal cohorts;IS Forrest;The Lancet,2023

4. A review on coronary artery disease, its risk factors, and therapeutics;AK Malakar;Journal of cellular physiology,2019

5. Mortality From Ischemic Heart Disease;AN Nowbar;Circ Cardiovasc Qual Outcomes,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3