A Unified Bayesian Model for Generalized Community Detection in Attribute Networks

Author:

Tian Qiang1,Wang Wenjun1,Xie Yingjie1,Wu Huaming2ORCID,Jiao Pengfei3,Pan Lin4ORCID

Affiliation:

1. College of Intelligence and Computing, Tianjin University, Tianjin, China

2. Center of Applied Mathematics, Tianjin University, Tianjin, China

3. Center of Biosafety Research and Strategy, Law School, Tianjin University, Tianjin, China

4. School of Marine Science and Technology, Tianjin University, Tianjin, China

Abstract

Identification of community structures and the underlying semantic characteristics of communities are essential tasks in complex network analysis. However, most methods proposed so far are typically only applicable to assortative community structures, that is, more links within communities and fewer links between different communities, which ignore the rich diversity of community regularities in real networks. In addition, the node attributes that provide rich semantics information of communities and networks can facilitate in-depth community detection of structural information. In this paper, we propose a novel unified Bayesian generative model to detect generalized communities and provide semantic descriptions simultaneously by combining network topology and node attributes. The proposed model is composed of two closely correlated parts by a transition matrix; we first apply the concept of a mixture model to describe network regularities and then adjust the classic Latent Dirichlet Allocation (LDA) topic model to identify community semantically. Thus, the model can detect broad types of network structure regularities, including assortative structures, disassortative structures, and mixture structures and provide multiple semantic descriptions for the communities. To optimize the objective function of the model, we use an effective Gibbs sampling algorithm. Experiments on a number of synthetic and real networks show that our model has superior performance compared with some baselines on community detection.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3