Neighbor Similarity Based Agglomerative Method for Community Detection in Networks

Author:

Cheng Jianjun1ORCID,Su Xing1ORCID,Yang Haijuan12,Li Longjie1ORCID,Zhang Jingming1,Zhao Shiyan1,Chen Xiaoyun1ORCID

Affiliation:

1. School of Information Science and Engineering, Lanzhou University, China

2. Department of Electronic Information Engineering, Lanzhou Vocational Technical College, China

Abstract

Community structures can reveal organizations and functional properties of complex networks; hence, detecting communities from networks is of great importance. With the surge of large networks in recent years, the efficiency of community detection is demanded critically. Therefore, many local methods have emerged. In this paper, we propose a node similarity based community detection method, which is also a local one consisted of two phases. In the first phase, we first take out the node with the largest degree from the network to take it as an exemplar of the first community and insert its most similar neighbor node into the community as well. Then, the one with the largest degree in the remainder nodes is selected; if its most similar neighbor has not been classified into any community yet, we create a new community for the selected node and its most similar neighbor. Otherwise, if its most similar neighbor has been classified into a certain community, we insert the selected node into the community to which its most similar neighbor belongs. This procedure is repeated until every node in the network is assigned to a community; at that time, we obtain a series of preliminary communities. However, some of them might be too small or too sparse; edges connecting to outside of them might go beyond the ones inside them. Keeping them as the final ones will lead to a low-quality community structure. Therefore, we merge some of them in an efficient approach in the second phase to improve the quality of the resulting community structure. To testify the performance of our proposed method, extensive experiments are performed on both some artificial networks and some real-world networks. The results show that the proposed method can detect high-quality community structures from networks steadily and efficiently and outperform the comparison algorithms significantly.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3