Thermal Stability and Tribological Performance of DLC-Si–O Films

Author:

Moolsradoo Nutthanun1ORCID,Abe Shinya1,Watanabe Shuichi1

Affiliation:

1. Department of Systems Engineering, Nippon Institute of Technology, 4-1 Gakuendai, Miyashiro Machi, Saitama 345-8501, Japan

Abstract

The thermal stability and tribological performance of silicon- and oxygen-incorporated diamond-like carbon films were investigated. The DLC-Si-O films were deposited using plasma-based ion implantation (PBII) method. The deposited films were annealed at 400°C, 600°C, and 750°C for 1 hour in vacuum, in argon, and in air atmospheres. Film properties were investigated using the Fourier transforms infrared spectroscopy, Raman spectroscopy, energy dispersive X-ray spectroscopy, and a ball-on-disk friction tester. The structures of the DLC-Si-O films with a low Si content (25 at.%Si, 1 at.%O) and high Si content (25 at.%Si, 1 at.%O) were not affected by the thermal annealing in vacuum at 400°C and 600°C, respectively, while they were affected by thermal annealing in argon and in air at 400°C. Film with 34 at.%Si and 9 at.%O after annealing demonstrated almost constant atomic contents until annealing at 600°C in vacuum. The friction coefficient of DLC-Si–O films with 34 at.%Si and 9 at.%O was shown to be relatively stable, with a friction coefficient of 0.04 before annealing and 0.05 after annealing at 600°C in vacuum. Moreover, the low friction coefficient of film annealed at 600°C in vacuum with 34 at.%Si and 9 at.%O was corresponded with low wear rate of 1.85 10−7 mm3/Nm.

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3