Affiliation:
1. College of Aerospace Science and Engineering, National University of Defense Technology, No. 109 Deya Road, Changsha, Hunan 410073, China
Abstract
In this paper, a reaching law-based adaptive fixed-time terminal sliding mode control law, which is used for coupled spacecraft tracking maneuver in the presence of large inertia parametric uncertainties and external disturbances, is proposed. The coupled 6-DOF kinematics and dynamics for spacecraft motion are modeled on Lie group SE(3). The relative configuration is expressed by a local coordinate (exponential coordinate) of SE(3). In order to estimate the inertia parameters and external disturbances, we also propose a novel adaptive update law, which can make the control law be applied without the inertia parameters of the spacecraft a priori. Fixed-time convergence property of the closed-loop feedback system is proved in the framework of Lyapunov. Numerical simulations are performed to demonstrate the performances of the proposed control scheme for coupled spacecraft tracking maneuver.
Funder
Shanghai Aerospace Science and Technology Innovation Foundation
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献