Damage Detection Applied to a Full-Scale Steel Bridge Using Temporal Moments

Author:

Svendsen Bjørn T.1ORCID,Frøseth Gunnstein T.1ORCID,Rönnquist Anders1ORCID

Affiliation:

1. Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway

Abstract

The most common damages in existing highway and railway steel bridges are related to fatigue and are, as reported in the literature, found in the structural system of the bridge deck. This paper proposes a methodology for detecting damaged joint connections in existing steel bridges to improve the quality of bridge inspections. The methodology combines the use of temporal moments from response measurements with an appropriate instrumentation setup. Damaged joint connections are identified by comparing statistical parameters based on temporal moments to a baseline, where the baseline data are established from statistical parameters evaluated for all considered joint connections. Localization of damaged joint connections is performed by utilizing the instrumentation setup. The feasibility of the proposed methodology is demonstrated through an experimental study on a full-scale steel riveted truss bridge with two known damages below the bridge deck, where both damages are identified and localized. The proposed methodology can improve the identification of critical structural damage during bridge inspections and is applicable to open-deck steel bridges.

Funder

Norwegian Railway Directorate and Bane NOR

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3