A Novel Fault Diagnosis Strategy for Heterogeneous Wireless Sensor Networks

Author:

Cao Li12ORCID,Yue Yinggao13ORCID,Zhang Yong3ORCID

Affiliation:

1. Oujiang College, Wenzhou University, Wenzhou 325035, China

2. School of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, China

3. Computer School, Hubei University of Arts and Science, Xiangyang 441053, China

Abstract

Fault diagnosis is a guarantee for the reliable operation of heterogeneous wireless sensor networks, and accurate fault prediction can effectively improve the reliability of wireless sensor networks. First, it summarizes the node fault classification and common fault diagnosis methods of heterogeneous wireless sensor networks. After that, taking advantage of the short learning time, fewer parameter settings, and good generalization ability of kernel extreme learning machine (KELM), the collected sample data of the sensor node hardware failure is introduced into the trained kernel extreme learning machine and realizes the fault identification of various hardware modules of the sensor node. Regarding the regularization coefficient C and the kernel parameter s in KELM as the model parameters, it will affect the accuracy of the fault diagnosis model of the kernel extreme learning machine. A method for the sensor nodes fault diagnosis of heterogeneous wireless sensor networks based on kernel extreme learning machine optimized by the improved artificial bee colony algorithm (IABC-KELM) is proposed. The proposed algorithm has stronger ability to solve regression fault diagnosis problems, better generalization performance, and faster calculation speed. The experimental results show that the proposed algorithm improves the accuracy of the hardware fault diagnosis of the sensor nodes and can be better applied to the node hardware fault diagnosis of heterogeneous wireless sensor networks.

Funder

Wenzhou University

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3