Affiliation:
1. School of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, China
2. Computer School, Hubei University of Arts and Science, Xiangyang 441053, China
Abstract
Data fusion can reduce the data communication time between sensor nodes, reduce energy consumption, and prolong the lifetime of the network, making it an important research focus in the field of heterogeneous wireless sensor networks (HWSNs). Normal sensor nodes are susceptible to external environmental interferences, which affect the measurement results. In addition, raw data contain redundant information. The transmission of redundant information consumes excess energy, thereby reducing the lifetime of the network. We propose a data fusion method based on an extreme learning machine optimized by particle swarm optimization for HWSNs. The spatiotemporal correlation between the data of the HWSNs is determined, and the extreme learning machine method is used to process the data collected by the sensor nodes in the hierarchical routing structure of the HWSN. The particle swarm optimization algorithm is used to optimize the input weight matrix and the hidden layer bias of the extreme learning machine. An output weight matrix is created to reduce the number of hidden layer nodes and improve the generalization ability of the model. The data fusion model fuses the original data collected by the sensor nodes. The simulation results show that the proposed algorithm reduces network energy consumption and improves the lifetime of the network, the efficiency of data fusion, and the reliability of data transmission compared with other data fusion methods.
Funder
Talent Introduction Project of Hubei University of Arts and Science
Subject
Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献