Data Fusion Algorithm for Heterogeneous Wireless Sensor Networks Based on Extreme Learning Machine Optimized by Particle Swarm Optimization

Author:

Cao Li1,Cai Yong1ORCID,Yue Yinggao2ORCID

Affiliation:

1. School of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, China

2. Computer School, Hubei University of Arts and Science, Xiangyang 441053, China

Abstract

Data fusion can reduce the data communication time between sensor nodes, reduce energy consumption, and prolong the lifetime of the network, making it an important research focus in the field of heterogeneous wireless sensor networks (HWSNs). Normal sensor nodes are susceptible to external environmental interferences, which affect the measurement results. In addition, raw data contain redundant information. The transmission of redundant information consumes excess energy, thereby reducing the lifetime of the network. We propose a data fusion method based on an extreme learning machine optimized by particle swarm optimization for HWSNs. The spatiotemporal correlation between the data of the HWSNs is determined, and the extreme learning machine method is used to process the data collected by the sensor nodes in the hierarchical routing structure of the HWSN. The particle swarm optimization algorithm is used to optimize the input weight matrix and the hidden layer bias of the extreme learning machine. An output weight matrix is created to reduce the number of hidden layer nodes and improve the generalization ability of the model. The data fusion model fuses the original data collected by the sensor nodes. The simulation results show that the proposed algorithm reduces network energy consumption and improves the lifetime of the network, the efficiency of data fusion, and the reliability of data transmission compared with other data fusion methods.

Funder

Talent Introduction Project of Hubei University of Arts and Science

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3