Unsupervised Structural Damage Detection Technique Based on a Deep Convolutional Autoencoder

Author:

Rastin Zahra1ORCID,Ghodrati Amiri Gholamreza1ORCID,Darvishan Ehsan2ORCID

Affiliation:

1. Natural Disasters Prevention Research Center, School of Civil Engineering, Iran University of Science & Technology, Tehran, Iran

2. Department of Civil Engineering, Roudehen Branch, Islamic Azad University, Roudehen, Iran

Abstract

Structural health monitoring (SHM) is a hot research topic with the main purpose of damage detection in a structure and assessing its health state. The major focus of SHM studies in recent years has been on developing vibration-based damage detection algorithms and using machine learning, especially deep learning-based approaches. Most of the deep learning-based methods proposed for damage detection in civil structures are based on supervised algorithms that require data from the healthy state and different damaged states of the structure in the training phase. As it is not usually possible to collect data from damaged states of a large civil structure, using such algorithms for these structures may be impractical. This paper proposes a new unsupervised deep learning-based method for structural damage detection based on convolutional autoencoders (CAEs). The main objective of the proposed method is to identify and quantify structural damage using a CAE network that employs raw vibration signals from the structure and is trained by the signals solely acquired from the healthy state of the structure. The CAE is chosen to take advantage of high feature extraction capability of convolution layers and at the same time use the advantages of an autoencoder as an unsupervised algorithm that does not need data from damaged states in the training phase. Applications on the two numerical models of IASC-ASCE benchmark structure and a grid structure located at the University of Central Florida, as well as the full-scale Tianjin Yonghe Bridge, prove the efficiency of the proposed algorithm in assessing the global health state of the structures and quantifying the damage.

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3