In Situ g-C3N4@Zno Nanocomposite: One-Pot Hydrothermal Synthesis and Photocatalytic Performance under Visible Light Irradiation

Author:

Luu Thi Lan Anh1ORCID,Neto Mateus Manuel2,Van Thang Pham1,Nguyen Ngoc Trung1,Nguyen Thi Tuyet Mai3,Nguyen Xuan Sang4ORCID,Nguyen Cong Tu1ORCID

Affiliation:

1. School of Engineering Physics, Hanoi University of Science and Technology, Hanoi, Vietnam

2. Agostinho Neto University, University City District, Stadium 11 November Street, Campus University Agostinho Neto, Luanda, Angola

3. School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam

4. Department of Electronics and Telecommunication, Saigon University, 273 An Duong Vuong, Ward 3, District 5, Ho Chi Minh city 084-08, Vietnam

Abstract

In situ g-C3N4@ZnO nanocomposites (with 0, 1, 3, 5, and 7 wt.% of g-C3N4 in nanocomposite) were synthesized via a one-pot hydrothermal method using precursors of urea, zinc nitrate hexahydrate, and hexamethylenetetramine. The g-C3N4@ZnO nanocomposites were characterized by X-ray diffraction, scanning electron microscope, diffuse reflectance spectroscopy, and photoluminescence spectroscopy. The photocatalyst activity of g-C3N4@ZnO nanocomposites was evaluated via methylene blue degradation experiment under visible light irradiation. The g-C3N4@ZnO nanocomposites showed an enhancement in photocatalytic activity in comparison to pure ZnO which increased with the g-C3N4 content (1, 3, 5, and 7 wt.%) in nanocomposites. The photocatalytic activity reached the highest efficiency of 96.8% when the content of g-C3N4 was 7.0 wt.%. Nanocomposite having 7.0 wt.% of g-C3N4 also showed good recyclability with degradation efficiency higher than 90% even in the 4th use. The improvement of photocatalytic activity could be attributed to the adsorption ability and effective separation of electron-hole pairs between g-C3N4 and ZnO. This work implies a simple method to in situ prepare the nanocomposite material of g-C3N4 and semiconductors oxide for photocatalyst applications with high efficiency and good recyclability.

Funder

Hanoi University of Science and Technology

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3