Recent updates on g-C3N4/ZnO-based binary and ternary heterojunction photocatalysts toward environmental remediation and energy conversion

Author:

Rana Parul,Dhull Priya,Sudhaik Anita,Chawla Akshay,Nguyen Van-Huy,Kaya Savaş,Ahamad Tansir,Singh Pardeep,Hussain Chaudhery Mustansar,Raizada Pankaj

Abstract

Background: The utilization of photocatalytic materials has garnered significant consideration due to their distinctive properties and diverse applications in environmental remediation and energy conversion. In photocatalysis, several wide and narrow band gap photocatalysts have been discovered. Amongst several photocatalysts, g-C3N4 photocatalyst is becoming the interest of the research community due to its unique properties. But as a single photocatalyst, it is inherited with certain confines for instance higher photocarrier recombination rate, lower quantum yield, low specific surface area, etc. However, the heterojunction formation of g-C3N4 with other wide band gap photocatalysts (ZnO) has improved its photocatalytic properties by overcoming its limitations. Methods: The synergistic interaction amid g-C3N4 and ZnO photocatalysts enhanced optoelectrical properties superior mechanical strength and improved photocatalytic activity. The nanocomposite exhibits excellent stability, high surface area, efficient separation, and migration of photocarriers, which are advantageous for applications in photocatalytic energy conversion and environmental remediation. The g-C3N4-ZnO nanocomposite represents a material comprising g-C3N4 and ZnO photocatalysts which exhibit a broad absorption range, efficient electron-hole separation, and strong redox potential. The combination of these two distinct materials imparts enhanced properties to the resulting nanocomposite, making it suitable for various applications. Henceforth, current review, we have discussed the photocatalytic properties of g-C3N4 and ZnO photocatalysts and modification strategies to improve their photocatalytic properties. Significant Findings: This article offers an inclusive overview of the g-C3N4-ZnO-based nanocomposite, highlighting its photocatalytic properties and potential applications in several pollutant degradation and energy conversion including hydrogen production and CO2 reduction.

Publisher

Eurasia Academic Publishing Group

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3