Influence of Chemically Reacting Ferromagnetic Carreau Nanofluid over a Stretched Sheet with Magnetic Dipole and Viscous Dissipation

Author:

Muntazir R. M. Akram1,Mushtaq M.1,Shahzadi S.2,Jabeen K.1ORCID

Affiliation:

1. Department of Math, UET, Lahore, Pakistan

2. Department of Physics, UET, Lahore, Pakistan

Abstract

Due to potential implications, boundary layer analysis of chemically reacting Carreau nanofluid has been carried out to examine flow properties of ferromagnetic fluid over a stretched sheet in the presence of magnetic dipole, for shear thinning and shear thickening fluids. Furthermore, the transportation of heat under thermal radiation, heat generation, the Brownian, and thermophoresis aspects has been evaluated. The dimensionless form of highly nonlinear coupled partial differential equations is obtained using suitable similarity transformations and then solved numerically by well-known bvp 4 c technique via MATLAB based on the shooting method. The outcomes of physical quantities are presented through graphs and numerical benchmarks. Moreover, outcomes for skin fraction, Sherwood and Nusselt numbers for velocity, concentration, and temperature are also estimated in this study. The present study reveals that the concentration and thermal boundary layer thicknesses were higher for shear thinning n < 1 fluid when compared with shear thickening n > 1 fluids, but reverse effects are to be observed for momentum boundary layer thickness.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference36 articles.

1. Low viscosity magnetic fluid obtained by the colloidal suspension of magnetic particles;S. S. Papell,1965

2. Enhancing thermal conductivity of fluids with nanoparticles;S. U. S. Choi

3. Ferrofluids: properties and applications

4. Rheological Equations from Molecular Network Theories

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3