Analysis of magnetic and non-magnetic nanoparticles with Newtonian/non-Newtonian base fluids over a nonlinear stretching sheet

Author:

Jabeen Kanwal1ORCID,Mushtaq Muhammad1,Muntazir Rana Muhammad Akram1

Affiliation:

1. Department of Mathematics, University of Engineering and Technology, Lahore, Pakistan

Abstract

An unsteady mixed convectional boundary layer flow of a Casson nanofluid having magnetic ( Fe3 O4) and non-magnetic ( Al2 O3) nanoparticles suspension within two different types of base fluids, water (Newtonian) and sodium alginate (non-Newtonian), which incorporates viscous dissipation effects over a nonlinear stretching sheet with magnetic field effects. Some suitable non-dimensional similarity transformations are applied to convert the governing coupled nonlinear partial differential equations into a set of ordinary differential equations and then solved by using differential transformation method in association with Pade-approximation. A comparison has been made with already published results to assure the validity and reliability of the computational results, good agreement is found between the current and previous studies. The impacts of different physical parameters active on flow, temperature, and nanoparticle concentration have been discussed both numerically and graphically. The impact of radiation, internal heat sink/source, viscous, and ohmic dissipation was discussed for magnetic and non-magnetic nanofluid categories. We have also presented the tabular results of various emerging parameters to discuss the nature of skin friction, Nusselt, and Sherwood numbers. It was observed that performance of non-Newtonian (sodium alginate) fluid in heat and mass transfer is slightly better than Newtonian (water) based fluid but no major difference was seen in heat and mass transfer when comparison was made with magnetic and non-magnetic nanoparticles.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Reference48 articles.

1. Choi SU, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. In: Proceedings, ASME International Mechanical Engineering Congress and Exposition, San Fransisco, 1995.

2. Free convection effect on mhd coupled heat and mass transfer of a moving permeable vertical surface

3. Anomalous thermal conductivity enhancement in nanotube suspensions

4. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3