A Flexible Reinforced Bin Packing Framework with Automatic Slack Selection

Author:

Yang Ting1,Luo Fei1ORCID,Fuentes Joel2,Ding Weichao1,Gu Chunhua1

Affiliation:

1. School of Information and Engineering, East China University of Science and Technology, Shanghai 200237, China

2. Joel Fuentes is with Department of Computer Science and Information Technologies, Universidad del Bío-Bío, Chillán, Chile

Abstract

The slack-based algorithms are popular bin-focus heuristics for the bin packing problem (BPP). The selection of slacks in existing methods only consider predetermined policies, ignoring the dynamic exploration of the global data structure, which leads to nonfully utilization of the information in the data space. In this paper, we propose a novel slack-based flexible bin packing framework called reinforced bin packing framework (RBF) for the one-dimensional BPP. RBF considers the RL-system, the instance-eigenvalue mapping process, and the reinforced-MBS strategy simultaneously. In our work, the slack is generated with a reinforcement learning strategy, in which the performance-driven rewards are used to capture the intuition of learning the current state of the container space, the action is the choice of the packing container, and the state is the remaining capacity after packing. During the construction of the slack, an instance-eigenvalue mapping process is designed and utilized to generate the representative and classified validate set. Furthermore, the provision of the slack coefficient is integrated into MBS-based packing process. Experimental results show that, in comparison with fit algorithms, MBS and MBS’, RBF achieves state-of-the-art performance on BINDATA and SCH_WAE datasets. In particular, it outperforms its baseline MBS and MBS’, averaging the number increase of optimal solutions of 189.05% and 27.41%, respectively.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3