Affiliation:
1. School of Information and Engineering, East China University of Science and Technology, Shanghai 200237, China
2. Joel Fuentes is with Department of Computer Science and Information Technologies, Universidad del Bío-Bío, Chillán, Chile
Abstract
The slack-based algorithms are popular bin-focus heuristics for the bin packing problem (BPP). The selection of slacks in existing methods only consider predetermined policies, ignoring the dynamic exploration of the global data structure, which leads to nonfully utilization of the information in the data space. In this paper, we propose a novel slack-based flexible bin packing framework called reinforced bin packing framework (RBF) for the one-dimensional BPP. RBF considers the RL-system, the instance-eigenvalue mapping process, and the reinforced-MBS strategy simultaneously. In our work, the slack is generated with a reinforcement learning strategy, in which the performance-driven rewards are used to capture the intuition of learning the current state of the container space, the action is the choice of the packing container, and the state is the remaining capacity after packing. During the construction of the slack, an instance-eigenvalue mapping process is designed and utilized to generate the representative and classified validate set. Furthermore, the provision of the slack coefficient is integrated into MBS-based packing process. Experimental results show that, in comparison with fit algorithms, MBS and MBS’, RBF achieves state-of-the-art performance on BINDATA and SCH_WAE datasets. In particular, it outperforms its baseline MBS and MBS’, averaging the number increase of optimal solutions of 189.05% and 27.41%, respectively.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献