Efficient Pre-Solve Algorithms for the Schwerin and Falkenauer_U Bin Packing Benchmark Problems for Getting Optimal Solutions with High Probability

Author:

Ábrahám Gyula,Dósa GyörgyORCID,Dulai TiborORCID,Tuza ZsoltORCID,Werner-Stark Ágnes

Abstract

Bin Packing is one of the research areas of Operations Research with many industrial applications, as well as rich theoretical impact. In this article, the authors deal with Bin Packing on the practical side: they consider two Bin Packing Benchmark classes. These benchmark problems are often used to check the “usefulness”, efficiency of algorithms. The problem is well-known to be NP-hard. Instead of introducing some exact, heuristic, or approximation method (as usual), the problem is attacked here with some kind of greedy algorithm. These algorithms are very fast; on the other hand, they are not always able to provide optimal solutions. Nevertheless, they can be considered as pre-processing algorithms for solving the problem. It is shown that almost all problems in the considered two benchmark classes are, in fact, easy to solve. In case of the Schwerin class, where there are 200 instances, it is obtained that all instances are solved by the greedy algorithm, optimally, in a very short time. The Falkenauer U class is a little bit harder, but, here, still more than 91% of the instances are solved optimally very fast, with the help of another greedy algorithm. Based on the above facts, the main contribution of the paper is to show that pre-processing is very useful for solving such kinds of problems.

Funder

National Research, Development and Innovation Fund of Hungary

NKFIH

National Research, Development and Innovation Fund

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference64 articles.

1. Approximation algorithms for bin packing: A survey;Coffmann,1997

2. Computer and Intractability: A Guide to the Theory of NP-Completeness;Garey,1979

3. Bounds for Certain Multiprocessing Anomalies

4. Bounds on Multiprocessing Timing Anomalies

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3