A Linear Parameter Varying Control Approach for DC/DC Converters in All-Electric Boats

Author:

Azizi Soroush1ORCID,Asemani Mohammad Hassan1ORCID,Vafamand Navid1ORCID,Mobayen Saleh23ORCID,Khooban Mohammad Hassan4ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran

2. Future Technology Research Center, National Yunlin University of Science and Technology, Douliu, Yunlin, Taiwan

3. Department of Electrical Engineering, University of Zanjan, Zanjan, Iran

4. Department of Engineering, Aarhus University, Aarhus, Denmark

Abstract

Utilization of renewable energies in association with energy storage is increased in different applications such as electrical vehicles (EVs), electric boats (EBs), and smart grids. A robust controller strategy plays a significant role to optimally utilize the energy resources available in a power system. In this paper, a suitable controller for the energy resources of an EB which consists of a 5 kW solar power plant, 5 kW fuel cell, and 2 kW battery package is designed based on the linear parameter varying (LPV) controller design approach. Initially, all component dynamics are augmented, and by exploiting the sector-nonlinearity approach, the LPV representation is derived. Then, the LPV control method determines the suitable gains of the states’ feedbacks to provide the required pulse commands of the boost converters of the energy resources to regulate the DC-link voltage and supply the power of EB loads. Comparing with the state-of-the-art nonlinear control methods, the developed control approach assures the stability of the overall system, as it considers all component dynamics in the design procedure. The real-time simulation results demonstrate the performance of the designed controller in the creation of a constant DC-link voltage.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3