Real-Time and In Situ Evaluation of Phycocyanin Concentration in Spirulina platensis Cultivation System by Using Portable Raman Spectroscopy

Author:

He Yong12,Liu Xiaoxi12,Fang Hui12,Zhang Jinnuo12,Feng Xuping12ORCID

Affiliation:

1. College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China

2. State Key Laboratory of Modern Optical Instruments, Zhejiang University, Hangzhou 310027, China

Abstract

Spirulina platensis can synthesize a large amount of phycocyanin, which had been developed as a health food. At the same time, Spirulina can absorb the nitrogen and phosphorus in wastewater and provide for its own growth. Here, we studied the optimal nitrogen and phosphorus supply for the Spirulina production process. For the first time, 405 nm portable Raman spectrometer was used to estimate phycocyanin content for real-time industrial applications. We obtained three Raman characteristic peaks of phycocyanin through density functional theory combined with home-built Raman spectrometer, which were 1272, 1337, and 1432 cm 1 . There was a good linear correlation between the sum of the three peak intensities and the PCL concentration (y = 18.887x + 833.530, R 2 = 0.890 ). The least squares support vector machine model based on the characteristic peaks was used to estimate the concentration of phycocyanin and obtained good results with a correlation coefficient of prediction of 0.907 and residual predictive deviation of 3.357. The results can provide decision-making for integration of Spirulina effluent treatment and phycocyanin production and provide references for real-time Spirulina-based biorefinery applications.

Funder

Key Projects of International Scientific and Technological Innovation Cooperation among Governments Under National Key R&D Plan

Publisher

Hindawi Limited

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3