Affiliation:
1. Department of Mathematics, The Hashemite University, Zarqa 13115, Jordan
2. Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria 0002, South Africa
Abstract
A deterministic model for the transmission dynamics of a communicable disease is developed and rigorously analysed. The model, consisting of five mutually exclusive compartments representing the human dynamics, has a globally asymptotically stable disease-free equilibrium (DFE) whenever a certain epidemiological threshold, known as the basicreproduction number(ℛ0), is less than unity; in such a case the endemic equilibrium does not exist. On the other hand, when the reproduction number is greater than unity, it is shown, using nonlinear Lyapunov function of Goh-Volterra type, in conjunction with the LaSalle's invariance principle, that the unique endemic equilibrium of the model is globally asymptotically stable under certain conditions. Furthermore, the disease is shown to be uniformly persistent wheneverℛ0>1.
Subject
Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献