Marburg Virus and Risk Factor Among Infected Population: A Modeling Study
-
Published:2024-03-27
Issue:1
Volume:18
Page:141-165
-
ISSN:1823-8343
-
Container-title:Malaysian Journal of Mathematical Sciences
-
language:en
-
Short-container-title:MJMS
Author:
Haque, Z.,Kamrujjaman, M.,Alam, M. S.,Biswas, M. H. A.
Abstract
This study aims to investigate the role of individuals with natural immunity in contributing to the overall spread of Marburg virus infection, a highly lethal human pathogen. Marburg virus was initially identified in 1967 during a significant outbreak in Marburg, Germany, and Belgrade, Serbia. Notably, there are currently no approved vaccines or treatments for Marburg virus infection due to its alarmingly high fatality rate. The study developed a mathematical model to better understand the transmission dynamics of Marburg virus disease (MVD), specifically focusing on the spread of infected individuals. Initial analysis employed established methods, evaluating factors such as the positive assessments, the basic reproduction number, and equilibrium point stability. This analytical approach provided valuable insights into MVD dynamics. Following this, numerical simulations were conducted to visually depict the outcomes derived from the analytical analysis. These simulations provided a more comprehensive understanding of the complex dynamics of MVD. Finally, this study presents a comprehensive analysis of Marburg virus transmission dynamics, shedding light on the impact of natural immunity on disease spread and emphasizing the significance of isolation strategies in mitigating the outbreak of this highly lethal pathogen.
Publisher
Universiti Putra Malaysia
Reference27 articles.
1. J. Adjemian, E. C. Farnon, F. Tschioko, J. F.Wamala, E. Byaruhanga, G. S. Bwire, E. Kansiime, A. Kagirita, S. Ahimbisibwe, F. Katunguka, B. Jeffs, J. J. Lutwama, R. Downing, J.W. Tappero, P. Formenty, B. Amman, C. Manning, J. Towner, S. T. Nichol & P. E. Rollin (2011). Outbreak of Marburg hemorrhagic fever among miners in Kamwenge and Ibanda Districts, Uganda, 2007. The Journal of Infectious Diseases, 204(suppl_3), S796–S799. https://doi.org/10.1093/infdis/jir312. 2. C. G. Albariño, T. Shoemaker, M. L. Khristova, J. F. Wamala, J. J. Muyembe, S. Balinandi, A. Tumusiime, S. Campbell, D. Cannon, A. Gibbons, E. Bergeron, B. Bird, K. Dodd, C. Spiropoulou, B. R. Erickson, L. Guerrero, B. Knust, S. T. Nichol, P. E. Rollin & U. Ströher (2013). Genomic analysis of filoviruses associated with four viral hemorrhagic fever outbreaks in Uganda and the Democratic Republic of the Congo in 2012. Virology, 442(2), 97–100. https://doi.org/10.1016/j.virol.2013.04.014. 3. D. G. Bausch, S. T. Nichol, J. J. Muyembe-Tamfum, M. Borchert, P. E. Rollin, H. Sleurs, P. Campbell, F. K. Tshioko, C. Roth, R. Colebunders, P. Pirard, S. Mardel, L.A. Olinda, H. Zeller, A. Tshomba, A. Kulidri, M. L. Libande, S. Mulangu, P. Formenty, T. Grein, H. Leirs, L. Braack, T. Ksiazek, S. Zaki, M. D. Bowen, S. B. Smit, P. A. Leman, F. J. Burt, A. Kemp & R. Swanepoel (2006). Marburg hemorrhagic fever associated with multiple genetic lineages of virus. New England Journal of Medicine, 355(9), 909–919. https://doi.org/10.1056/nejmoa051465. 4. M. H. A. Biswas, M. A. Islam, S. Akter, S. Mandal, M. S. Khatun, S. A. Samad, A. K. Paul & M. R. Khatun (2020). Modelling the effect of self-immunity and the impacts of asymptomatic and symptomatic individuals on COVID-19 outbreak. Computer Modeling in Engineering & Sciences, 125(3), 1033–1060. https://doi.org/10.32604/cmes.2020.012792. 5. N. Chitnis, J. M. Hyman & J. M. Cushing (2008). Determining important parameters in the spread of Malaria through the sensitivity analysis of a mathematical model. Bulletin of Mathematical Biology, 70, 1272–1296. https://doi.org/10.1007/s11538-008-9299-0.
|
|