Gene Identification and Characterization of Correlations for DEPs_DEGs Same Trend Responding to Salinity Adaptation in Scylla paramamosain

Author:

Wang Huan12,Wei Hongling1,Tang Lei1,Lu Junkai1,Mu Changkao12,Wang Chunlin12ORCID

Affiliation:

1. School of Marine Science, Ningbo University, Ningbo, 315211 Zhejiang, China

2. Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211 Zhejiang, China

Abstract

Scylla paramamosain is a commercially important species distributed along the coast of southern China and other Indo-Pacific countries. Sudden salinity drop exceeding the adjustment capability of S. paramamosain can result in damage or even mortality. In our previous study, we had analyzed the mechanism of adapting sudden drop in salinity from the level of transcriptomics and proteomics, respectively. This study performed a correlation analysis of RNA sequencing transcriptomics and iTRAQ proteomics in order to investigate the adaptation mechanisms to sudden salinity drop from 23‰ to 3‰. There were 3954 correlations and a total of 15 correlations for differentially expressed proteins (DEPs) and differentially expressed genes (DEGs) from proteomics and transcriptomics. The correlation between DEPs and DEGs was 0, and the Spearman correlation coefficient of the same trend correlation for DEPs and DEGs was the highest, reaching 0.9080. KEGG pathway enrichment correlation revealed that protein digestion and absorption (Ko04974), proximal tubule bicarbonate (Ko04964), and bile secretion (Ko04976) played important roles in Na+/H+ and Na+/K+ exchange. In addition, important genes related to osmoregulation, such as ion transport and carbonic anhydrase, were also detected in the correlation analysis for same trend DEPs_DEGs. In conclusion, the proteome and transcriptome correlation results from this study indicate that ion transport plays a critical role in the adaptation of S. paramamosain to sudden reduction in salinity.

Funder

BGI

Publisher

Hindawi Limited

Subject

Pharmaceutical Science,Genetics,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3