Response of intestinal microbiota to saline-alkaline water in mud crab (Scylla paramamosain) based on multiple low salinity culture modes

Author:

Niu Mingming,Li Xudong,Chen Yuhao,Qin Kangxiang,Liang Guoling,Hu Yun,Jiang Xiaosong,Wang Huan,Zhu Ritong,Wang Chunlin,Mu Changkao

Abstract

IntroductionThe intestinal microbiota acts as an additional “organ” that performs a variety of fu\nctions for the host’s health. However, the composition and role of the intestinal microbiota in Scylla paramamosain cultivated in inland low salinity saline-alkaline water are unknown.MethodsAccordingly, from the perspective of practical production, we explored the intestinal microbiota communities and the critical bacteria of S. paramamosain in normal salinity seawater (NS), coastal low salinity seawater (CS), acute low salinity seawater (AS) and inland low salinity saline-alkaline water (IS).ResultsResults showed that there were significant differences in the diversity composition of intestinal microbiota and the relative abundance of dominant taxa in each group of cultured crabs. Firmicutes, Proteobacteria, Bacteroidota and Campilobacterota were shown to be the major phyla shared by the four groups, with Bacteroidota having the highest relative abundance (27.10%) in the inland low salinity saline-alkaline water group (IS). Fusobacteriota had the highest proportion in IS group compared with other low salinity groups. A total of 284 indicator bacteria were identified, belonging to eight phyla, and their relative abundances were varied significantly (P < 0.05). Genus Carboxylicivirga, as the indicator bacterium of the IS group, may play a critical role in the adaptation of crab to saline-alkaline water environment. Moreover, salinity may exert considerable selective pressure on the entire microbial community.DiscussionThese findings revealed the features of the intestinal microbiome in S. paramamosain in multiple low salinity patterns, and provided candidate probiotics and basic information for crab farming in saline-alkaline water, which was conducive to the development and perfection of mud crab culturing technology in inland low salinity saline-alkaline water.

Funder

National Natural Science Foundation of China

K. C. Wong Magna Fund in Ningbo University

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3