Affiliation:
1. School of Transportation, Southeast University, Nanjing 211189, China
2. Hebei Provincial Communications Planning and Design Institute, Shijiazhuang 050011, China
3. Vehicle-Road-Cloud-Network (Hebei) Industrial Research Center, Shijiazhuang 050011, China
Abstract
Accurate estimation of the road adhesion coefficient can help drivers and vehicles perceive changes in road state effectively, reducing the occurrence of traffic crashes accordingly. Therefore, this paper proposes a road adhesion coefficient estimation method based on vehicle-road coordination and deep learning. Firstly, a vehicle-based data feedback system combined with a vehicle-road network cloud is introduced, and CarSim simulation is used to expand the data set and train the model effectively. Then, the dynamic analysis of the whole vehicle is carried out, and the vehicle operation data related to the adhesion coefficient are obtained as the input of the estimation model. Then a combined model of road adhesion coefficient estimation based on self-attention (SA), convolutional neural network (CNN), and long short-term memory (LSTM) is established, to reduce the instability of the prediction, Q-learning is used to optimize the weight of the model. Finally, the model is verified by the simulation data and the actual vehicle-based data. The results show that the vehicle-based data feedback system combined with the vehicle-road network Ccloud is effective, and compared with other commonly used model, the estimation model proposed in this paper can effectively predict the road adhesion coefficient.
Funder
Hebei Provincial Department of Transportation
Subject
Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献