An Immune Clonal Selection Algorithm for Synthetic Signature Generation

Author:

Song Mofei1ORCID,Sun Zhengxing1ORCID

Affiliation:

1. State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China

Abstract

The collection of signature data for system development and evaluation generally requires significant time and effort. To overcome this problem, this paper proposes a detector generation based clonal selection algorithm for synthetic signature set generation. The goal of synthetic signature generation is to improve the performance of signature verification by providing more training samples. Our method uses the clonal selection algorithm to maintain the diversity of the overall set and avoid sparse feature distribution. The algorithm firstly generates detectors with a segmentedr-continuous bits matching rule andP-receptor editing strategy to provide a more wider search space. Then the clonal selection algorithm is used to expand and optimize the overall signature set. We demonstrate the effectiveness of our clonal selection algorithm, and the experiments show that adding the synthetic training samples can improve the performance of signature verification.

Funder

National High Technology Research and Development Program of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3