Affiliation:
1. Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Chaoyang District, 100032 Beijing, China
2. Department of Hematology, Beijing Chaoyang Hospital, Capital Medical University, Chaoyang District, 100032 Beijing, China
Abstract
Imaging examination plays an important role in the early diagnosis of myeloma. The study focused on the segmentation effects of deep learning-based models on CT images for myeloma, and the influence of different chemotherapy treatments on the prognosis of patients. Specifically, 186 patients with suspected myeloma were the research subjects. The U-Net model was adjusted to segment the CT images, and then, the Faster region convolutional neural network (RCNN) model was used to label the lesions. Patients were divided into bortezomib group (group 1, n = 128) and non-bortezomib group (group 2, n = 58). The biochemical indexes, blood routine indexes, and skeletal muscle of the two groups were compared before and after chemotherapy. The results showed that the improved U-Net model demonstrated good segmentation results, the Faster RCNN model can realize the labeling of the lesion area in the CT image, and the classification accuracy rate was as high as 99%. Compared with group 1, group 2 showed enlarged psoas major and erector spinae muscle after treatment and decreased bone marrow plasma cells content, blood M protein, urine 24 h light chain, pBNP, ß-2 microglobulin (β2MG), ALP, and white blood cell (WBC) levels (
). In conclusion, deep learning is suggested in the segmentation and classification of CT images for myeloma, which can lift the detection accuracy. Two different chemotherapy regimens both improve the prognosis of patients, but the effects of non-bortezomib chemotherapy are better.
Funder
Beijing Municipal Natural Science Foundation
Subject
Health Informatics,Biomedical Engineering,Surgery,Biotechnology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献