Deep Learning-Based CT Imaging in Diagnosing Myeloma and Its Prognosis Evaluation

Author:

Wang Jinzhou1ORCID,Shi Xiangjun2ORCID,Yao Xingchen1ORCID,Ren Jie1ORCID,Du Xinru1ORCID

Affiliation:

1. Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Chaoyang District, 100032 Beijing, China

2. Department of Hematology, Beijing Chaoyang Hospital, Capital Medical University, Chaoyang District, 100032 Beijing, China

Abstract

Imaging examination plays an important role in the early diagnosis of myeloma. The study focused on the segmentation effects of deep learning-based models on CT images for myeloma, and the influence of different chemotherapy treatments on the prognosis of patients. Specifically, 186 patients with suspected myeloma were the research subjects. The U-Net model was adjusted to segment the CT images, and then, the Faster region convolutional neural network (RCNN) model was used to label the lesions. Patients were divided into bortezomib group (group 1, n = 128) and non-bortezomib group (group 2, n = 58). The biochemical indexes, blood routine indexes, and skeletal muscle of the two groups were compared before and after chemotherapy. The results showed that the improved U-Net model demonstrated good segmentation results, the Faster RCNN model can realize the labeling of the lesion area in the CT image, and the classification accuracy rate was as high as 99%. Compared with group 1, group 2 showed enlarged psoas major and erector spinae muscle after treatment and decreased bone marrow plasma cells content, blood M protein, urine 24 h light chain, pBNP, ß-2 microglobulin (β2MG), ALP, and white blood cell (WBC) levels ( P < 0.05 ). In conclusion, deep learning is suggested in the segmentation and classification of CT images for myeloma, which can lift the detection accuracy. Two different chemotherapy regimens both improve the prognosis of patients, but the effects of non-bortezomib chemotherapy are better.

Funder

Beijing Municipal Natural Science Foundation

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3