Extended Fully Fuzzy Linear Regression to Analyze a Solid Cantilever Beam Moment

Author:

Seyedmonir Seyedehnegar1,Bayrami Mostafa2,Jafarzadeh Ghoushchi Saeid3ORCID,Alipour Yengejeh Amir4,Morabbi Heravi Hakimeh5

Affiliation:

1. Department of Electrical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran

2. Sustainable Management of Natural Resources and Environment Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam

3. Faculty of Industrial Engineering, Urmia University of Technology, Urmia, Iran

4. Department of Statistics, University of Central Florida, Orlando, USA

5. Department of Statistics, University of Bojnord, Bojnurd, Iran

Abstract

There are several procedures such as possibilistic and least-square methods to estimate regression models. In this study, first, a fully fuzzy regression equation is converted into a fully fuzzy linear framework. By considering a least-square approach, a model is suggested based on matrix equations for solving fully fuzzy regression models. The main advantage of this method over existing ones is that this method considered values based on their specification, and all linear problems can be easily solved. Moreover, a case study for solid mechanics about the quantity of beam momentum is considered. In this example, the inner data are force values, and the output is momentum values.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3