A Novel Method for Network Intrusion Detection

Author:

Wang Hongmin1ORCID,Wei Qiang1,Xie Yaobin1ORCID

Affiliation:

1. State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou 450001, China

Abstract

Intrusion detection is one of the key research directions of network information security. In order to make up for the deficiencies of traditional security technologies such as firewall, encryption, and authentication, by analyzing the characteristics of network attacks and existing intrusion detection models, the advantages of triadic concept analysis and the application of fuzzy set theory in network intrusion detection are analyzed. The intrusion detection model FCTA based on triadic concept analysis is proposed, which promotes the further development of network intrusion detection. First, we analyze the characteristics of the data and use TF-IDF and Z-Score to normalize and standardize the data to construct a fuzzy triadic background containing quadratic characteristics. It is used to describe the triadic relationship between network connections, network connection characteristics, and intrusion types of network packets. Then, the (i)-induced operator is used to construct the fuzzy triadic concept set based on the fuzzy triadic background and transformed into a fuzzy attribute triadic concept set. Then, the new samples are classified by calculating the similarity between the new samples and the elements in the fuzzy attribute triadic concept set by using the Euclidean distance formula. In order to reduce the model space complexity, compression storage technology is adopted in the model building process.. Finally, by using the IDS-2018 dataset, the rationality and effectiveness of the FCTA model are demonstrated. The average accuracy and average intrusion detection rate of FCTA classification are much higher than BP neural network, SVM algorithm, and KNN algorithm, and the FCTA misjudgment rate is much lower than the BP neural network algorithm, the KNN algorithm, and the SVM algorithm; with the increase of data volume, the accuracy rate and intrusion detection rate increase significantly.

Funder

State Key Laboratory of Mathematical Engineering and Advanced Computing

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Reference41 articles.

1. Integrated security threats and defense of cyber-physical systems;T. Liu;Acta Automatica Sinica,2019

2. Preface to the column “theory, method and application of cyber-physical system;Ge Guo;Control and Decision,2019

3. A Deep Learning Approach to Network Intrusion Detection

4. A lightweight intrusion detection model based on autoencoder network with feature reduction;N. Gao;Acta Electronica Sinica,2017

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3