A Primer on Underwater Quantum Key Distribution

Author:

Paglierani Pietro1ORCID,Fahim Raouf Amir Hossein23,Pelekanakis Konstantinos1,Petroccia Roberto1,Alves João1,Uysal Murat4

Affiliation:

1. NATO STO Centre for Maritime Research and Experimentation, La Spezia 19126, Italy

2. Department of Electrical and Electronics Engineering, Ozyegin University, Istanbul 34794, Türkiye

3. Department of Electrical & Computer Engineering, North Carolina State University, Raleigh, NC 27695, USA

4. Engineering Division, New York University Abu Dhabi (NYUAD), Abu Dhabi 129188, UAE

Abstract

The growing importance of underwater networks (UNs) in mission-critical activities at sea enforces the need for secure underwater communications (UCs). Classical encryption techniques can be used to achieve secure data exchange in UNs. However, the advent of quantum computing will pose threats to classical cryptography, thus challenging UCs. Currently, underwater cryptosystems mostly adopt symmetric ciphers, which are considered computationally quantum robust but pose the challenge of distributing the secret key upfront. Post-quantum public-key (PQPK) protocols promise to overcome the key distribution problem. The security of PQPK protocols, however, only relies on the assumed computational complexity of some underlying mathematical problems. Moreover, the use of resource-hungry PQPK algorithms in resource-constrained environments such as UNs can require nontrivial hardware/software optimization efforts. An alternative approach is underwater quantum key distribution (QKD), which promises unconditional security built upon the physical principles of quantum mechanics (QM). This tutorial provides a basic introduction to free-space underwater QKD (UQKD). At first, the basic concepts of QKD are presented, based on a fully worked out QKD example. A thorough state-of-the-art analysis of UQKD is carried out. The paper subsequently provides a theoretical analysis of the QKD performance through free-space underwater channels and its dependence on the key optical parameters of the system and seawater. Finally, open challenges, points of strength, and perspectives of UQKD are identified and discussed.

Funder

NATO Allied Command Transformation

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3