Design and performance of entanglement-based underwater VLC/QKD systems

Author:

Sy Dang Tien12,Vu Minh Q.1ORCID,Dang Ngoc T.1ORCID

Affiliation:

1. Posts and Telecommunications Institute of Technology

2. Academy of Military Science and Technology

Abstract

Underwater wireless communication is rapidly advancing, finding applications in diverse fields such as oceanography, defense, and commercial ventures. However, ensuring security in such transmissions is crucial due to the sensitive nature of the data involved and the challenges posed by the underwater environment. While classical encryption techniques provide some level of security, the emergence of quantum computing presents opportunities and challenges. Quantum key distribution (QKD) offers theoretically unbreakable encryption, making it an attractive solution. Extending QKD capabilities to underwater environments is a significant endeavor in this context. This paper explores the feasibility of applying an entanglement-based non-coherent QKD protocol inspired by the BBM92 protocol to underwater visible light communication (VLC)/QKD systems. We investigate the system’s design criteria and analyze its secret key performance, addressing challenges such as water absorption and turbulence-induced fading, focusing on addressing unauthorized receiver attacks. Through analysis and the considered case study, the feasibility and efficacy of this approach are explored, contributing to the advancement of secure underwater communications.

Funder

Posts and Telecommunications Institute of Technology

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3