Passive Mechanical Properties of Human Medial Gastrocnemius and Soleus Musculotendinous Unit

Author:

Wang Ruoli123ORCID,Yan Shiyang14,Schlippe Marius2,Tarassova Olga5ORCID,Pennati Gaia Valentina6ORCID,Lindberg Frida7,Körting Clara1,Destro Antea1,Yang Luming4ORCID,Shi Bin4,Arndt Anton58ORCID

Affiliation:

1. KTH MoveAbility Lab, Department of Engineering Mechanics, Royal Institute of Technology, Stockholm, Sweden

2. KTH BioMEx Center, Royal Institute of Technology, Stockholm, Sweden

3. Department of Children’s and Women’s Health, Karolinska Institutet, Stockholm, Sweden

4. National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu, China

5. Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden

6. Karolinska Institutet, Department of Clinical Sciences, Danderyd University Hospital, Division of Rehabilitation Medicine, Stockholm, Sweden

7. School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, Stockholm, Sweden

8. Department of CLINTEC, Karolinska Institutet, Stockholm, Sweden

Abstract

The in vivo characterization of the passive mechanical properties of the human triceps surae musculotendinous unit is important for gaining a deeper understanding of the interactive responses of the tendon and muscle tissues to loading during passive stretching. This study sought to quantify a comprehensive set of passive muscle-tendon properties such as slack length, stiffness, and the stress-strain relationship using a combination of ultrasound imaging and a three-dimensional motion capture system in healthy adults. By measuring tendon length, the cross-section areas of the Achilles tendon subcompartments (i.e., medial gastrocnemius and soleus aspects), and the ankle torque simultaneously, the mechanical properties of each individual compartment can be specifically identified. We found that the medial gastrocnemius (GM) and soleus (SOL) aspects of the Achilles tendon have similar mechanical properties in terms of slack angle (GM: 10.96 ° ± 3.48 ° ; SOL: 8.50 ° ± 4.03 ° ), moment arm at 0° of ankle angle (GM: 30.35 ± 6.42  mm; SOL: 31.39 ± 6.42  mm), and stiffness (GM: 23.18 ± 13.46  Nmm-1; SOL: 31.57 ± 13.26  Nmm-1). However, maximal tendon stress in the GM was significantly less than that in SOL (GM: 2.96 ± 1.50  MPa; SOL: 4.90 ± 1.88  MPa, p = 0.024 ), largely due to the higher passive force observed in the soleus compartment (GM: 99.89 ± 39.50  N; SOL: 174.59 ± 79.54  N, p = 0.020 ). Moreover, the tendon contributed to more than half of the total muscle-tendon unit lengthening during the passive stretch. This unequal passive stress between the medial gastrocnemius and the soleus tendon might contribute to the asymmetrical loading and deformation of the Achilles tendon during motion reported in the literature. Such information is relevant to understanding the Achilles tendon function and loading profile in pathological populations in the future.

Funder

Vetenskapsrådet

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3