Author:
Holzer Denis,Millard Matthew,Hahn Daniel,Siebert Tobias,Schwirtz Ansgar,Seiberl Wolfgang
Abstract
AbstractIn vivo, the force–velocity relation (F–v–r) is typically derived from the torque–angular velocity relation (T–ω–r), which is subject to two factors that may influence resulting measurements: tendon compliance and preload prior to contraction. The in vivo plantar flexors’ T–ω–r was determined during preloaded maximum voluntary shortening contractions at 0–200°/s. Additionally, we used a two factor block simulation study design to independently analyze the effects of preload and tendon compliance on the resulting T–ω–r. Therefore, we replicated the in vivo experiment using a Hill-type muscle model of the gastrocnemius medialis. The simulation results matched a key pattern observed in our recorded in vivo experimental data: during preloaded contractions, torque output of the muscle was increased when compared with non-preloaded contractions from literature. This effect increased with increasing contraction velocity and can be explained by a rapidly recoiling tendon, allowing the contractile element to contract more slowly, thus developing higher forces compared with non-preloaded contractions. Our simulation results also indicate that a more compliant tendon results in increased ankle joint torques. The simulation and the experimental data clearly show that the deduction of the in vivo F–v–r from the T–ω–r is compromised due to the two factors preloading and tendon compliance.
Funder
Deutsche Forschungsgemeinschaft, Germany
Technische Universität München
Publisher
Springer Science and Business Media LLC
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献