Deep Ensemble Model for Classification of Novel Coronavirus in Chest X-Ray Images

Author:

Ahmad Fareed12ORCID,Farooq Amjad1ORCID,Ghani Muhammad Usman1ORCID

Affiliation:

1. Department of Computer Science, University of Engineering and Technology, Lahore 54890, Pakistan

2. Quality Operations Laboratory, Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan

Abstract

The novel coronavirus, SARS-CoV-2, can be deadly to people, causing COVID-19. The ease of its propagation, coupled with its high capacity for illness and death in infected individuals, makes it a hazard to the community. Chest X-rays are one of the most common but most difficult to interpret radiographic examination for early diagnosis of coronavirus-related infections. They carry a considerable amount of anatomical and physiological information, but it is sometimes difficult even for the expert radiologist to derive the related information they contain. Automatic classification using deep learning models can help in better assessing these infections swiftly. Deep CNN models, namely, MobileNet, ResNet50, and InceptionV3, were applied with different variations, including training the model from the start, fine-tuning along with adjusting learned weights of all layers, and fine-tuning with learned weights along with augmentation. Fine-tuning with augmentation produced the best results in pretrained models. Out of these, two best-performing models (MobileNet and InceptionV3) selected for ensemble learning produced accuracy and FScore of 95.18% and 90.34%, and 95.75% and 91.47%, respectively. The proposed hybrid ensemble model generated with the merger of these deep models produced a classification accuracy and FScore of 96.49% and 92.97%. For test dataset, which was separately kept, the model generated accuracy and FScore of 94.19% and 88.64%. Automatic classification using deep ensemble learning can help radiologists in the correct identification of coronavirus-related infections in chest X-rays. Consequently, this swift and computer-aided diagnosis can help in saving precious human lives and minimizing the social and economic impact on society.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3