Multi-modal deep learning methods for classification of chest diseases using different medical imaging and cough sounds

Author:

Malik HassaanORCID,Anees TayyabaORCID

Abstract

Chest disease refers to a wide range of conditions affecting the lungs, such as COVID-19, lung cancer (LC), consolidation lung (COL), and many more. When diagnosing chest disorders medical professionals may be thrown off by the overlapping symptoms (such as fever, cough, sore throat, etc.). Additionally, researchers and medical professionals make use of chest X-rays (CXR), cough sounds, and computed tomography (CT) scans to diagnose chest disorders. The present study aims to classify the nine different conditions of chest disorders, including COVID-19, LC, COL, atelectasis (ATE), tuberculosis (TB), pneumothorax (PNEUTH), edema (EDE), pneumonia (PNEU). Thus, we suggested four novel convolutional neural network (CNN) models that train distinct image-level representations for nine different chest disease classifications by extracting features from images. Furthermore, the proposed CNN employed several new approaches such as a max-pooling layer, batch normalization layers (BANL), dropout, rank-based average pooling (RBAP), and multiple-way data generation (MWDG). The scalogram method is utilized to transform the sounds of coughing into a visual representation. Before beginning to train the model that has been developed, the SMOTE approach is used to calibrate the CXR and CT scans as well as the cough sound images (CSI) of nine different chest disorders. The CXR, CT scan, and CSI used for training and evaluating the proposed model come from 24 publicly available benchmark chest illness datasets. The classification performance of the proposed model is compared with that of seven baseline models, namely Vgg-19, ResNet-101, ResNet-50, DenseNet-121, EfficientNetB0, DenseNet-201, and Inception-V3, in addition to state-of-the-art (SOTA) classifiers. The effectiveness of the proposed model is further demonstrated by the results of the ablation experiments. The proposed model was successful in achieving an accuracy of 99.01%, making it superior to both the baseline models and the SOTA classifiers. As a result, the proposed approach is capable of offering significant support to radiologists and other medical professionals.

Publisher

Public Library of Science (PLoS)

Reference162 articles.

1. A novel coronavirus from patients with pneumonia in China, 2019;Na Zhu;New England journal of medicine,2020

2. False-negative results of initial RT-PCR assays for COVID-19: a systematic review;Ingrid Arevalo-Rodriguez;PloS one,2020

3. False negative tests for SARS-CoV-2 infection—challenges and implications;Steven Woloshin;New England Journal of Medicine,2020

4. Role of computed tomography in COVID-19;Gianluca Pontone;Journal of cardiovascular computed tomography,2021

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3