Estimation of Extreme Cable Forces of Cable-Stayed Bridges Based on Monitoring Data and Random Vehicle Models

Author:

Ren Yuan1,Zhu Zhiyuan12,Fan Ziyuan1ORCID,Huang Qiao1

Affiliation:

1. School of Transportation, Southeast University, Nanjing 211189, China

2. Jiangsu Yangtze Highway Bridge Co., Ltd., Nanjing 210004, China

Abstract

For long-span cable-stayed bridges, cables serve as one of the most important components to guarantee structural integrity. Forces of stay cables indicate not only the performance of cables themselves but also the overall condition of bridges. In order to help stakeholders to make maintenance decisions, an extreme cable force estimation method was proposed based on cable force measurements and traffic data from the weighing system. First, raw monitoring data were preprocessed based on a median filtering to obtain usable cable force signals. The multiresolution wavelet method was used to extract traffic-induced force component from mixed signals. Then, a Monte Carlo-based random vehicle model was developed using traffic data from the weighing system. Based on field temperature measurements and simulation of traffic-induced effects, extreme cable forces with respect to vehicle loads and temperature effects were predicted by extreme value theory. The Generalized Pareto Distribution (GPD) was adopted to establish the probability distribution models of the daily maximum cable force. Then, the extreme value within a return period of 100 years was determined and compared with the design loading demand. Finally, the effectiveness of the proposed method was validated through a cable-stayed bridge in China. As a result, the low-frequency varying component of cable force response had positive correlation with environmental temperatures, and the extreme value of the predicted cable force under prospective traffic volumes was within limit interval value according to the design code. The conclusions can be utilized by bridge owners to make maintenance decisions.

Funder

Natural Science Foundation of Jiangsu Province

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3