Echinacoside Upregulates Sirt1 to Suppress Endoplasmic Reticulum Stress and Inhibit Extracellular Matrix Degradation In Vitro and Ameliorates Osteoarthritis In Vivo

Author:

Lin Zhen123,Teng Cheng123,Ni Libin123,Zhang Zhao123,Lu Xinlei4,Lou Junsheng123,Wang Libo123,Wang Yuxin5,Chen Wenhao5,Zhang Xiaolei1236ORCID,Lin Zhongke123ORCID

Affiliation:

1. Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China

2. Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China

3. The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China

4. The School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, Zhejiang Province, China

5. The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China

6. Chinese Orthopaedic Regenerative Medicine Society, Hangzhou, Zhejiang Province, China

Abstract

Background. Osteoarthritis (OA) is a progressive illness that destroys cartilage. Oxidative stress is a major contributor of OA, while endoplasmic reticulum (ER) stress is the key cellular damage under oxidative stress in chondrocytes. Echinacoside (ECH) is the main extract and active substance of Cistanche, with potent antioxidative stress (OS) properties, and currently under clinical trials in China. However, its function in OA is yet to be determined. Purpose. We aimed to explore the specific role of ECH in the occurrence and development of OA and its underlying mechanism in vivo and in vitro. Methods. After the mice were anesthetized, the bilateral medial knee joint meniscus resection was performed to establish the DMM model. TBHP was used to induce oxidative stress to establish the OA model in chondrocytes in vitro. Western blot and RT-PCR were used to evaluate the level of ER stress-related biomarkers such as p-PERK/PERK, GRP78, ATF4, p-eIF2α/eIF2α, and CHOP and apoptosis-related proteins such as BAX, Bcl-2, and cleaved caspase-3. Meanwhile, we used SO staining, immunofluorescence, and immunohistochemical staining to evaluate the pharmacological effects of ECH in mice in vivo. Results. We demonstrated the effectiveness of ECH in suppressing ER stress and restoring ECM metabolism in vitro. In particular, ECH was shown to suppress tert-Butyl hydroperoxide- (TBHP-) induced OS and subsequently lower the levels of p-PERK/PERK, GRP78, ATF4, p-eIF2α/eIF2α, and CHOP in vitro. Simultaneously, ECH reduced MMP13 and ADAMTS5 levels and promoted Aggrecan and Collagen II levels, suggesting ECM degradation suppression. Moreover, we showed that ECH mediates its cellular effects via upregulation of Sirt1. Lastly, we confirmed that ECH can protect against OA in mouse OA models. Conclusion. In summary, our findings indicate that ECH can inhibit ER stress and ECM degradation by upregulating Sirt1 in mouse chondrocytes treated with TBHP. It can also prevent OA development in vivo.

Funder

Lin He’s New Medicine and Clinical Translation Academician Workstation Research Fund

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3