Affiliation:
1. Key Laboratory of Digital Manufacturing Technology and Application, Lanzhou University of Technology, Lanzhou 730050, China
2. New Oriental Education and Technology Group, Lanzhou 730030, China
Abstract
The bearing dynamic behaviors will be complicated due to the changes in the geometric sizes and relative positions of the bearing components at high speed. In this paper, based on the Hertz contact theory, elastohydrodynamic lubrication (EHL) model, and Jones’ bearing theory, the comprehensive stiffness model of the angular contact ball bearing is proposed in consideration of the effects of elastic deformation, centrifugal deformation, thermal deformation, and the ball spinning motion. The influences of these factors on bearing dynamic stiffness are investigated in detail. The calculation results show that the centrifugal deformation and thermal deformation increase with the increase in rotation speed. When the centrifugal deformation and thermal deformation are considered, the bearing radial contact stiffness increases as the speed increases, whereas the axial contact stiffness and the angular contact stiffness decrease. When the deformations and the EHL are all considered, the comprehensive bearing stiffness decreases with the increasing speed. It is also found that the spinning motion of the ball causes the comprehensive bearing stiffness to increase.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献