A Novel Approach for Feature Selection and Classification of Diabetes Mellitus: Machine Learning Methods

Author:

Saxena Roshi1ORCID,Sharma Sanjay Kumar1,Gupta Manali1,Sampada G. C.2ORCID

Affiliation:

1. CSE Department, Gautam Buddha University, Greater Noida, India

2. Cedargate Technologies, Kathmandu, Nepal

Abstract

An active research area where the experts from the medical field are trying to envisage the problem with more accuracy is diabetes prediction. Surveys conducted by WHO have shown a remarkable increase in the diabetic patients. Diabetes generally remains in dormant mode and it boosts the other diseases if patients are diagnosed with some other disease such as damage to the kidney vessels, problems in retina of the eye, and cardiac problem; if unidentified, it can create metabolic disorders and too many complications in the body. The main objective of our study is to draw a comparative study of different classifiers and feature selection methods to predict the diabetes with greater accuracy. In this paper, we have studied multilayer perceptron, decision trees, K-nearest neighbour, and random forest classifiers and few feature selection techniques were applied on the classifiers to detect the diabetes at an early stage. Raw data is subjected to preprocessing techniques, thus removing outliers and imputing missing values by mean and then in the end hyperparameters optimization. Experiments were conducted on PIMA Indians diabetes dataset using Weka 3.9 and the accuracy achieved for multilayer perceptron is 77.60%, for decision trees is 76.07%, for K-nearest neighbour is 78.58%, and for random forest is 79.8%, which is by far the best accuracy for random forest classifier.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3