Abstract
Bu çalışma, uyku kalitesi ile yaşam tarzı faktörleri arasındaki bağlantıyı derinleme-sine incelemektedir. Araştırma, cinsiyet, yaş ve meslek gibi demografik özellikler ile uyku süresi, kalitesi, fiziksel aktivite düzeyleri ve stres gibi yaşam tarzı değişken-lerinin uyku bozukluklarına etkisini makine öğrenimi teknikleri kullanarak analiz etmektedir. Çalışmada, Lojistik Regresyon, En yakın komşular, Naive Bayes, Rastgele Orman, AdaBoostClassifier ve Destek Vektör Makinesi (SVM) gibi çeşitli makine öğrenimi modelleri uygulanmıştır. Özellikle Rastgele Orman ve SVM mod-elleri, yüksek doğruluk oranları sayesinde uyku bozukluklarını belirlemede etkili oldukları gözlemlenmiştir. Ayrıca, meslek ve stres düzeyleri ile uyku bozuklukları arasındaki ilişkiler üzerine detaylı analizler yapılarak, uyku sağlığının iyileştirilmesi için öneriler sunulmuştur.
Publisher
International Journal of Pure and Applied Sciences
Reference28 articles.
1. St-Onge, M., Grandner, M. A., Brown, D. L., Conroy, M. B., Jean-Louis, G., Coons, M. J., … & Bhatt, D. L. (2016). Sleep duration and quality: impact on lifestyle behaviors and cardiometabolic health: a scientific statement from the american heart association. Circulation, 134(18), 367-386.
2. Bruce, E., Lunt, L., & McDonagh, J. E. (2017). Sleep in adolescents and young adults. Clinical Medicine, 17(5), 424-428.
3. Chattu, V. K., Manzar, M. D., Kumary, S., Burman, D., Spence, D. W., & Pandi-Perumal, S. R. (2018). The global problem of insufficient sleep and its serious public health implications. Healthcare, 7(1), 1-16.
4. Allen, S., Akram, U., & Ellis, J. (2020). Examination of sleep health dimensions and their as-sociations with perceived stress and health in a uk sample. Journal of Public Health. 28, 42(1), 34-41.
5. Urtnasan, E., Joo, E. Y., & Lee, K. (2021). Ai-enabled algorithm for automatic classification of sleep disorders based on single-lead electrocardiogram. Diagnostics, 11(11), 2054.