Product Innovation Design Method Based on BP Neural Network

Author:

Huang Shihui1ORCID

Affiliation:

1. Department of Arts and Technology, Chengdu College of University of Electronic Science and Technology, Chengdu 610000, China

Abstract

Innovative product design is the core problem of modern industry and the source power of enterprise development. With the continuous improvement of China’s material level, product innovation design has changed from functional needs to emotional needs, and the product design method centered on users’ emotional needs has attracted much attention. With the emergence of new technologies such as artificial intelligence and big data, the automation and intelligence of advanced algorithms and innovative design methods for online product decision driven by multimodal multimedia data in e-commerce have become inevitable trends in the field of product design, and it is a big challenge to improve the innovative design ability of products by using information technology. In order to solve this problem, based on the research of BP neural network technology, this paper puts forward an innovative product design method based on image-Kempi method. The color features of images are reconstructed and integrated, and then transferred to product modeling, so as to generate new products with both content image modeling features and style image color features, which brings visual inspiration to users. The results show that KENPI method combines the theories of Kansei engineering, convolutional neural network, and neural style transfer, and establishes a mapping model between product modeling elements and product semantics. Convolutional neural network and neural style transfer model are used to extract, reconstruct, and integrate the color features of style diagrams, and transfer them to product modeling to design new product images. By evaluating the image quality and comparing the product semantics before and after the migration, the validity and feasibility of the migration are verified. Based on BP neural network, a nonlinear mapping model between product attribute space and product semantic space is constructed, and the generalization ability of the model is evaluated, which verifies the feasibility and effectiveness of this method. The research results have important theoretical guiding significance for improving the innovative design ability of enterprises, enhancing product competitiveness, and customer satisfaction.

Funder

Chengdu College of University of Electronic Science and Technology

Publisher

Hindawi Limited

Subject

General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3