Product Innovation Design Based on Deep Learning and Kansei Engineering

Author:

Quan Huafeng,Li Shaobo,Hu JianjunORCID

Abstract

Creative product design is becoming critical to the success of many enterprises. However, the conventional product innovation process is hindered by two major challenges: the difficulty to capture users’ preferences and the lack of intuitive approaches to visually inspire the designer, which is especially true in fashion design and form design of many other types of products. In this paper, we propose to combine Kansei engineering and the deep learning for product innovation (KENPI) framework, which can transfer color, pattern, etc. of a style image in real time to a product’s shape automatically. To capture user preferences, we combine Kansei engineering with back-propagation neural networks to establish a mapping model between product properties and styles. To address the inspiration issue in product innovation, the convolutional neural network-based neural style transfer is adopted to reconstruct and merge color and pattern features of the style image, which are then migrated to the target product. The generated new product image can not only preserve the shape of the target product but also have the features of the style image. The Kansei analysis shows that the semantics of the new product have been enhanced on the basis of the target product, which means that the new product design can better meet the needs of users. Finally, implementation of this proposed method is demonstrated in detail through a case study of female coat design.

Funder

National Natural Science Foundation of China

Science and Technology Foundation of Guizhou Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3