Simulation of the Electro-Superconducting System Based on the H Equation

Author:

Zhang Jun1ORCID

Affiliation:

1. College of Computer and Information Engineering, Guizhou University of Commerce, Guiyang 550014, Guizhou, China

Abstract

In order to reduce the levitation energy consumption and increase the levitation air gap, a simulation study of the electrochemistry superconducting magnetic levitation system based on the H equation is proposed. Through finite element simulation, the magnetic field distribution, current distribution, force, and other characteristics of the magnetic suspension system in the superconducting gravimeter are obtained; the relationship between the force of the superconducting ball in the magnetic field and the height of the suspension body and the current of the suspension coil is analyzed; and the penetration rate, the magnetic gradient, penetration depth, and maximum magnetic induction intensity of the superconducting spherical surface of the single-coil electrochemistry superconducting magnetic levitation system are obtained by simulation calculation. Simulation results show that, at 1 s, we start to use 0.2 s, 0.4 s, 0.6 s, and 0.8 s time, respectively, to pass current into the floating coil until it reaches 4.4 A. The magnetic gradient of the electrochemistry superconducting magnetic levitation system using a single coil is too large to meet the requirements of gravity measurement, the penetration depth is much smaller than the thickness of the superconducting sphere, and the maximum magnetic field on the surface of the superconducting sphere is much smaller than the critical magnetic field value of the superconducting material, and no loss will occur. The critical magnetic field value of the superconducting sphere is much smaller than that of the superconducting sphere. The critical magnetic field value of the material will not quench, which verifies that the H equation can simulate the superconducting magnetic levitation system well and has a high simulation accuracy and efficiency.

Funder

Second Batch of New Engineering Research and Practice Projects

Publisher

Hindawi Limited

Subject

General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Retracted: Simulation of the Electro-Superconducting System Based on the H Equation;Journal of Chemistry;2024-01-24

2. RCIT: A Robust Catadioptric-based Instrument 3D Tracking Method For Microsurgical Instruments In a Single-Camera System;2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC);2023-07-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3